organ chip
心脏跳动到肺部呼吸,芯片上的器官是人类生物学研究中最热门的新工具。尽管这些设备可能与计算机组件比人体部位更相似,但科学家们现在已经为包括肝脏、肺甚至女性生殖系统在内的一系列器官创建了工作模型。
DingXu (Suzhou) Microfluidics Technology Co., Ltd. is a high-tech enterprise dedicated to the field of microfluidics. We are committed to providing customers with comprehensive microfluidic solutions, including customized microfluidic chip development, surface modification, microfluidic chip processing equipment, and microfluidic instruments. Our team boasts extensive experience and technical expertise, continuously combining professional knowledge with innovative thinking to deliver high-quality solutions. We consistently prioritize customer-centric values, embrace self-challenges, and pursue excellence. Through professionalism, innovation, and collaboration, we aim to create greater value for our customers and contribute to a brighter future in the field of microfluidics.
心脏跳动到肺部呼吸,芯片上的器官是人类生物学研究中最热门的新工具。尽管这些设备可能与计算机组件比人体部位更相似,但科学家们现在已经为包括肝脏、肺甚至女性生殖系统在内的一系列器官创建了工作模型。
器官芯片微流控芯片不仅有用且非常有前途,但在设计时需要特别注意,这些微流控芯片模仿细胞的自然栖息地,研究人员必须了解该技术的特权和限制,以最大程度上来还原这种相似性。在设计器官芯片时,必须仔细考虑三个主要特征:细胞来源、流动动力学和芯片架构。
摘要 器官芯片设备或组织芯片是市场上需求最高的微流控芯片,能够彻底改变制药行业。近年来,各种各样的器官上-A-芯片已经设计并试验成功-心脏在一个芯片上,肝脏在一个芯片上,大脑在一个芯片上,肾在一个芯片上,肠在一个芯片上,并在眼睛芯片,仅举几例。 什么是器官芯片? 器官芯片是一种微型装置,通常比手掌还小,它采用微流体技术创建微米级尺寸的微通道和腔室,用于在类似于细胞自然栖息地的微环境中培养细胞。 这些微流体装置是密封和无菌的,由光学透明材料制成,可以对细胞进行视觉和实时监测和分析。 器官芯片设备由生物相容性聚合物材料制成,具有模块化特性。芯片的模块化允许将传感器和执行器等多个模块连接到主微流体芯…
Epoxy resin material for pouring PDMS chips with the precision of SU8 molds and the durability of regular acrylic molds.
Silicon molds (PDMS chip molds) are ideal for preparing microchannels for PDMS chips with high depth-to-width ratios. Microchannel structures with depth-to-width ratios of up to 25:1 can be easily achieved by using the dry etching technology of silicon, and the line widths can be controlled to be more than 2 μm, with an accuracy error of only ±1 μm.
The Electrophoresis Microfluidic Chip is an innovative bioanalytical tool that combines electrophoresis and microfluidic technologies. Integrating the advantages of microfluidics, this technology utilizes micro-scale channels, electric fields, and highly flexible flow control to achieve efficient separation, detection, and analysis of biomolecules. This article delves into the technical principles, application areas, advantages, challenges, and future prospects of CEMC.
It adopts the principle of microfluidics to guide the reaction materials into tiny channels for efficient mixing and reaction on a microscopic scale.
© 2025. All Rights Reserved. 苏ICP备2022036544号-1